水果苍蝇是果实产量最有害的昆虫物种之一。在AlertTrap中,使用不同的最先进的骨干功能提取器(如MobiLenetv1和MobileNetv2)的SSD架构的实现似乎是实时检测问题的潜在解决方案。SSD-MobileNetv1和SSD-MobileNetv2表现良好并导致AP至0.5分别为0.957和1.0。YOLOV4-TINY优于SSD家族,在AP@0.5中为1.0;但是,其吞吐量速度略微慢。
translated by 谷歌翻译
我们提出了一个数据收集和注释管道,该数据从越南放射学报告中提取信息,以提供胸部X射线(CXR)图像的准确标签。这可以通过注释与其特有诊断类别的数据相匹配,这些数据可能因国家而异。为了评估所提出的标签技术的功效,我们构建了一个包含9,752项研究的CXR数据集,并使用该数据集的子集评估了我们的管道。以F1得分为至少0.9923,评估表明,我们的标签工具在所有类别中都精确而始终如一。构建数据集后,我们训练深度学习模型,以利用从大型公共CXR数据集传输的知识。我们采用各种损失功能来克服不平衡的多标签数据集的诅咒,并使用各种模型体系结构进行实验,以选择提供最佳性能的诅咒。我们的最佳模型(CHEXPERT-FRECTER EDIDENENET-B2)的F1得分为0.6989(95%CI 0.6740,0.7240),AUC为0.7912,敏感性为0.7064,特异性为0.8760,普遍诊断为0.8760。最后,我们证明了我们的粗分类(基于五个特定的异常位置)在基准CHEXPERT数据集上获得了可比的结果(十二个病理),以进行一般异常检测,同时在所有类别的平均表现方面提供更好的性能。
translated by 谷歌翻译
从较高的计算效率到实现新颖和复杂结构的发现,深度学习已成为设计和优化纳米光子电路和组件的有力框架。但是,数据驱动和基于勘探的机器学习策略在其对纳米光逆设计的有效性方面都有局限性。监督的机器学习方法需要大量的培训数据,以产生高性能模型,并且在设计空间的复杂性鉴于训练数据之外,难以推广。另一方面,基于无监督和强化学习的方法可以具有与之相关的非常长的培训或优化时间。在这里,我们证明了一种混合监督的学习和强化学习方法来实现纳米光子结构的逆设计,并证明这种方法可以减少训练数据的依赖性,改善模型预测的普遍性,并通过数量级缩短探索性培训时间。因此,提出的策略解决了许多现代深度学习的挑战,同时为新的设计方法开辟了大门,这些方法利用了多种机器学习算法来为光子设计提供更有效和实用的解决方案。
translated by 谷歌翻译
如今,越来越多的人被诊断出患有心血管疾病(CVD),这是全球死亡的主要原因。鉴定这些心脏问题的金标准是通过心电图(ECG)。标准的12铅ECG广泛用于临床实践和当前的大多数研究。但是,使用较少的铅可以使ECG更加普遍,因为它可以与便携式或可穿戴设备集成。本文介绍了两种新型技术,以提高当前深度学习系统的3铅ECG分类的性能,从而与使用标准12铅ECG训练的模型相提并论。具体而言,我们提出了一种以心跳回归数量的形式的多任务学习方案,以及将患者人口统计数据整合到系统中的有效机制。随着这两个进步,我们在两个大规模的ECG数据集(即Chapman和CPSC-2018)上以F1分数为0.9796和0.8140的分类性能,这些数据分别超过了当前最新的ECG分类方法,该方法超过了当前的ECG分类方法。甚至那些接受了12条铅数据的培训。为了鼓励进一步开发,我们的源代码可在https://github.com/lhkhiem28/lightx3ecg上公开获得。
translated by 谷歌翻译
最近的人工智能(AI)算法已在各种医学分类任务上实现了放射科医生级的性能。但是,只有少数研究涉及CXR扫描异常发现的定位,这对于向放射学家解释图像级分类至关重要。我们在本文中介绍了一个名为Vindr-CXR的可解释的深度学习系统,该系统可以将CXR扫描分类为多种胸部疾病,同时将大多数类型的关键发现本地化在图像上。 Vindr-CXR接受了51,485次CXR扫描的培训,并通过放射科医生提供的边界盒注释进行了培训。它表现出与经验丰富的放射科医生相当的表现,可以在3,000张CXR扫描的回顾性验证集上对6种常见的胸部疾病进行分类,而在接收器操作特征曲线(AUROC)下的平均面积为0.967(95%置信区间[CI]:0.958---------0.958------- 0.975)。 VINDR-CXR在独立患者队列中也得到了外部验证,并显示出其稳健性。对于具有14种类型病变的本地化任务,我们的自由响应接收器操作特征(FROC)分析表明,VINDR-CXR以每扫描确定的1.0假阳性病变的速率达到80.2%的敏感性。还进行了一项前瞻性研究,以衡量VINDR-CXR在协助六名经验丰富的放射科医生方面的临床影响。结果表明,当用作诊断工具时,提出的系统显着改善了放射科医生本身之间的一致性,平均Fleiss的Kappa的同意增加了1.5%。我们还观察到,在放射科医生咨询了Vindr-CXR的建议之后,在平均Cohen的Kappa中,它们和系统之间的一致性显着增加了3.3%。
translated by 谷歌翻译
表示技术的快速发展和大规模医学成像数据的可用性必须在3D医学图像分析中快速增加机器学习的使用。特别是,深度卷积神经网络(D-CNN)是关键参与者,并被医学成像界采用,以协助临床医生和医学专家进行疾病诊断。然而,培训深层神经网络,例如在高分辨率3D体积的计算机断层扫描(CT)扫描中进行诊断任务的D-CNN带来了强大的计算挑战。这提出了开发基于深度学习的方法,这些方法在2D图像中具有强大的学习表示形式,而是3D扫描。在本文中,我们提出了一种新的策略,以根据沿轴的相邻切片的描述来训练CT扫描上的\ emph {slice level}分类器。特别是,每一个都是通过卷积神经网络(CNN)提取的。该方法适用于具有每片标签的CT数据集,例如RSNA颅内出血(ICH)数据集,该数据集旨在预测ICH的存在并将其分类为5个不同的子类型。我们在RSNA ICH挑战的最佳4 \%最佳解决方案中获得了单个模型,其中允许模型集成。实验还表明,所提出的方法显着优于CQ500上的基线模型。所提出的方法是一般的,可以应用于其他3D医学诊断任务,例如MRI成像。为了鼓励该领域的新进步,我们将在接受论文后制定我们的代码和预培训模型。
translated by 谷歌翻译
联合学习的目的是从多个分散设备(即客户)培训全球模型,而无需交换其私人本地数据。关键挑战是处理非i.i.d。 (独立分布的)数据,这些数据可能引起其本地功能的差异。我们介绍了超球联邦学习(球形)框架,以解决非i.i.d。通过限制学习数据点的学习表示,以在客户共享的单位超孔上。具体而言,所有客户都通过最大程度地减少固定分类器的损失来学习其本地表示,其权重跨度跨越了单位。在联合培训改善了全球模型后,通过最大程度地减少平方平方损失,通过封闭形式的解决方案进一步校准了该分类器。我们表明,可以有效地计算校准解决方案,而无需直接访问本地数据。广泛的实验表明,我们的球形方法能够通过相当大的利润率(在具有挑战性的数据集中达到6%)来提高多个现有联合学习算法的准确性,并具有增强的计算和跨数据集和模型架构的通信效率。
translated by 谷歌翻译
高级深度学习(DL)算法可以预测患者基于乳房成像报告和数据系统(BI-RAD)和密度标准的患者发育乳腺癌的风险。最近的研究表明,多视图分析的结合改善了整体乳房考试分类。在本文中,我们提出了一种新的多视图DL方法,用于乳房X线照片的Bi-RAD和密度评估。所提出的方法首先部署深度卷积网络,用于分别对每个视图进行特征提取。然后将提取的特征堆叠并馈入光梯度升压机(LightGBM)分类器中以预测Bi-RAD和密度分数。我们对内部乳房数据集和公共数据集数字数据库进行广泛的实验,用于筛选乳房X线摄影(DDSM)。实验结果表明,所提出的方法在两个基准数据集中突出了巨大的边距(内部数据集5%,DDSM数据集10%)优于两个基准分类方法。这些结果突出了组合多视图信息来改善乳腺癌风险预测性能的重要作用。
translated by 谷歌翻译
通过增强模型,输入示例,培训集和优化目标,已经提出了各种方法进行分发(OOD)检测。偏离现有工作,我们有一个简单的假设,即标准的离心模型可能已经包含有关训练集分布的足够信息,这可以利用可靠的ood检测。我们对验证这一假设的实证研究,该假设测量了模型激活的模型和分布(ID)迷你批次,发现OOD Mini-Batches的激活手段一直偏离培训数据的培训数据。此外,培训数据的激活装置可以从批量归一化层作为“自由午餐”中有效地计算或从批量归一化层次上检索。基于该观察,我们提出了一种名为神经平均差异(NMD)的新型度量,其比较了输入示例和训练数据的神经手段。利用NMD的简单性,我们提出了一种有效的OOD探测器,通过标准转发通道来计算神经手段,然后是轻量级分类器。广泛的实验表明,在检测精度和计算成本方面,NMD跨越多个数据集和模型架构的最先进的操作。
translated by 谷歌翻译
Graph Neural Networks (GNNs) have shown satisfying performance on various graph learning tasks. To achieve better fitting capability, most GNNs are with a large number of parameters, which makes these GNNs computationally expensive. Therefore, it is difficult to deploy them onto edge devices with scarce computational resources, e.g., mobile phones and wearable smart devices. Knowledge Distillation (KD) is a common solution to compress GNNs, where a light-weighted model (i.e., the student model) is encouraged to mimic the behavior of a computationally expensive GNN (i.e., the teacher GNN model). Nevertheless, most existing GNN-based KD methods lack fairness consideration. As a consequence, the student model usually inherits and even exaggerates the bias from the teacher GNN. To handle such a problem, we take initial steps towards fair knowledge distillation for GNNs. Specifically, we first formulate a novel problem of fair knowledge distillation for GNN-based teacher-student frameworks. Then we propose a principled framework named RELIANT to mitigate the bias exhibited by the student model. Notably, the design of RELIANT is decoupled from any specific teacher and student model structures, and thus can be easily adapted to various GNN-based KD frameworks. We perform extensive experiments on multiple real-world datasets, which corroborates that RELIANT achieves less biased GNN knowledge distillation while maintaining high prediction utility.
translated by 谷歌翻译